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1. Introduction 

*The generalized Apostol-Bernoulli polynomials 

𝐵𝑛
(𝛼)

(𝑥; 𝜆) of order 𝛼 are defined by Luo (2009) and 
Srivastava and Manocha (1984) through the 
generating relation: 

 

∑ 𝐵𝑛
(𝛼)

(𝑥; 𝜆)
𝑡𝑛

𝑛!
∞
𝑛=0 = (

𝑡

𝜆𝑒𝑡−1
)

(𝛼)

𝑒𝑥𝑡 , |𝑡 + 𝑙𝑜𝑔𝜆| < 2𝜋; 1𝛼 =

1,  

 
where 𝛼 and 𝜆 are the arbitrary real or complex 
parameters and 𝑥 ∈ 𝑅.The Apostol-Bernoulli 
polynomials and the Apostol-Bernoulli numbers are 
given by 

 

𝐵𝑛(𝑥; 𝜆) = 𝐵𝑛
(1)(𝑥; 𝜆), 𝐵𝑛(𝜆) = 𝐵𝑛(0; 𝜆), 𝑛 ∈ 𝑁0, 

 
respectively. The case 𝜆 = 1in the above relations 
give the classical Bernoulli polynomials Bn(x) and the 
classical Bernoulli numbers Bn. 

Recently, for the arbitrary real or complex 
parameters 𝛼, 𝜆 and 𝑥 ∈ 𝑅, Luo (2009) generalized 

the Apostol-Euler polynomials 𝐸𝑛
(𝛼)

(𝑥; 𝜆) of order 𝛼 
by the generating relation 

 

∑ 𝐸𝑛
(𝛼)

(𝑥; 𝜆)
𝑡𝑛

𝑛!
∞
𝑛=0 = (

2

𝜆𝑒𝑡+1
)

(𝛼)

𝑒𝑥𝑡 , |𝑡 + 𝑙𝑜𝑔𝜆| < 𝜋; 1𝛼 = 1.  

The Apostol-Euler polynomials and the Apostol-
Euler numbers are given by 
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𝐸𝑛(𝑥; 𝜆) = 𝐸𝑛
(1)(𝑥; 𝜆), 𝐸𝑛(𝜆) = 𝐸𝑛(0; 𝜆),  

 
respectively. The above relations give the classical 
Euler polynomials 𝐸𝑛(𝑥) and the classical Euler 
number 𝐸𝑛 when 𝜆 = 1. 

Let 𝑥 ∈ 𝑅. For an arbitrary real or complex 
parameters 𝛼 and 𝜆, the Apostol-Genocchi 
polynomials of order 𝛼 are defined by Luo (2009) 
and Srivastava and Manocha (1984) 

 

∑ 𝐺𝑛
(𝛼)

(𝑥; 𝜆)
𝑡𝑛

𝑛!
∞
𝑛=0 = (

2𝑡

𝜆𝑒𝑡+1
)

(𝛼)

𝑒𝑥𝑡 , |𝑡 + 𝑙𝑜𝑔𝜆| < 𝜋; 1𝛼 = 1.  

 
The Apostol-Genocchi polynomials and Apostol-

Genocchi numbers are given by 
 

𝐺𝑛(𝑥; 𝜆) = 𝐺𝑛
(1)(𝑥; 𝜆), 𝐺𝑛(𝜆) = 𝐺𝑛(0; 𝜆),  

 
respectively. When 𝜆 = 1, the above relations give 
the classical Genocchi polynomials 𝐺𝑛(𝑥) and the 
classical Genocchi numbers 𝐺𝑛. 

The two variable Laguerre polynomials 𝐿𝑛(𝑥; 𝑦) 
are defined by the generating functions (Dattoli and 
Torre, 1998) 

 

∑ 𝐿𝑛(𝑥; 𝑦)∞
𝑛=0

𝑡𝑛

𝑛!
= 𝑒𝑦𝑡𝐶0(𝑥𝑡)                                                     (1) 

 

where 𝐶0(𝑥) is the 0-th order Tricomi function 
(Dattoli and Torre, 1998) 

 

𝐶0(𝑥) = ∑
(−1)𝑟𝑥𝑟

(𝑟!)2
∞
𝑟=0 .                                                                    (2) 

From (1) and (2), we get 
 

𝐿𝑛(𝑥, 𝑦) = ∑ (𝑛
𝑠
)

𝑛!(−1)𝑠𝑥𝑠𝑦𝑛−𝑠

(𝑛−𝑠)!(𝑠!)2
𝑛
𝑠 .                                                   (3) 
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The multiple power sums are defined by Luo 
(2009) as follows 
 

𝑆𝑘
(𝑙)(𝑚; 𝜆) = ∑ ( 𝑙

𝑣1,𝑣2,…,𝑣𝑚
) 𝜆𝑣1+2𝑣2+⋯+𝑚𝑣𝑚0≤𝑣1≤⋯≤𝑣𝑚=𝑙

𝑣1+𝑣2+⋯+𝑣𝑚

(𝑣1 +

2𝑣2 + ⋯ + 𝑚𝑣𝑚)𝑘 .                                                                        (4) 
 

From (4), we have (Luo, 2009). 
 

(
1−𝜆𝑚𝑒𝑚𝑡

1−𝜆𝑒𝑡
)

𝑙

= 𝜆(−𝑙) ∑ {∑ (𝑛
𝑝

) (−𝑙)𝑛−𝑝𝑛
𝑝 𝑆𝑝

(𝑙)(𝑚; 𝜆)}
𝑡𝑛

𝑛!
∞
𝑛=0     (5) 

 
From (5), for 𝑙 = 1 

 
1−𝜆𝑚𝑒𝑚𝑡

1−𝜆𝑒𝑡
=

1

𝜆
∑ {∑ (𝑛

𝑝
) (−1)𝑛−𝑝𝑛

𝑝 𝑆𝑝
(1)(𝑚; 𝜆)}

𝑡𝑛

𝑛!
∞
𝑛=0 .               (6) 

 
The Stirling numbers of the second kind defined 

by Ozden et al. (2010) as 
 

∑ 𝑆(𝑛, 𝑣, 𝑎, 𝑏, 𝛽)∞
𝑛=0

𝑡𝑛

𝑛!
=

(𝛽𝑏𝑒𝑡−𝑎𝑏)
𝑣

𝑣!
                                           (7) 

 
where 𝑣, 𝑎, 𝑏, 𝛽 ∈ 𝑅, 𝑎 ≠ 𝑏.  

Unified Apostol-Bernoulli, Euler and Genocchi 
polynomials are defined by Ozarslan (2011) 

 

∑ 𝑃𝑛,𝛽
(𝛼)(𝑥; 𝑘; 𝑎, 𝑏)∞

𝑛=0
𝑡𝑛

𝑛!
= (

21−𝑘𝑡𝑘

𝛽𝑏𝑒𝑡−𝑎𝑏
)

𝛼

𝑒𝑥𝑡 ,    

𝑘 ∈ 𝑁0, 𝑎, 𝑏 ∈ 𝑅\{0}, 𝛼, 𝛽 ∈ 𝐶.                                                   (8) 

 
The 2-variable Kample de Feriet Hermite 

polynomials are defined in (Ozarslan, 2013; Pathan 
and Khan, 2014) as follows 

 

∑ 𝐻𝑛
(2)(𝑥, 𝑦)

𝑡𝑛

𝑛!
= 𝑒𝑥𝑡+𝑦𝑡2∞

𝑛=0 .                                                     (9) 

 

Definition 1: Let 𝛼 ∈ 𝑁0, 𝜆 be an arbitrary real or 
complex parameter 𝑥, 𝑦, 𝑧 ∈ 𝑅. The Laguerre-based 
generalized Apostol-Bernoulli polynomials are 
defined in Khan and Usman (2016) as following 
generating functions  

 

∑ ( 𝐿B𝑛
(𝛼)(𝑥, 𝑦, 𝑧; 𝜆))∞

𝑛=0
𝑡𝑛

𝑛!
= (

𝑡

𝜆𝑒𝑡−1
)

𝛼
𝑒𝑦𝑡+𝑧𝑡2

𝐶0(𝑥𝑡)  

{|𝑡| < 2𝜋 𝑤ℎ𝑒𝑛 𝛼 ∈ 𝐶, 𝜆 = 1, |𝑡| < |𝑙𝑜𝑔𝜆|   𝑤ℎ𝑒𝑛 𝛼 ∈ 𝑁0,
𝜆 ≠ 1, 1𝛼 = 1 }.                                                                            (10) 

 
For 𝑘 ∈ 𝑍, k>1 then k-th polylogarithm is defined 

by Bayad and Hamahata (2011) as 
 

𝐿𝑖𝑘(𝑧) = ∑
𝑧𝑛

𝑛!
∞
𝑛=1 .                                                                        (11) 

 

This function is convergent for |𝑧| < 1, when k=1 
 

𝐿𝑖1(𝑧) = −𝑙𝑜𝑔(1 − 𝑧). 

 
Kim and Kim (2015) defined the poly-Bernoulli 

polynomials as 
 

∑ 𝐵𝑛
(𝑘)∞

𝑛=0 (𝑥)
𝑡𝑛

𝑛!
=

𝐿𝑖𝑘(1−𝑒−𝑡)

𝑒𝑡−1
𝑒𝑥𝑡 .                                (12) 

Hamahata (2014) defined the poly-Euler 
polynomials by the following generating functions 

 

 ∑ 𝐸𝑛
(𝑘)∞

𝑛=0 (𝑥)
𝑡𝑛

𝑛!
=

2𝐿𝑖𝑘(1−𝑒−𝑡)

𝑡(𝑒𝑡+1)
𝑒𝑥𝑡 .                                          (13) 

 
Kim et al. (2014) defined poly-Genocchi 

polynomials as 
 

∑ 𝐺𝑛
(𝑘)∞

𝑛=0 (𝑥)
𝑡𝑛

𝑛!
=

2𝐿𝑖𝑘(1−𝑒−𝑡)

𝑒𝑡+1
𝑒𝑥𝑡 .                                           (14) 

 
For k=1 in (12), (13) and (14), we get the classical 

Bernoulli, Euler and Genocchi polynomials 
respectively, 

 

𝐵𝑛
(1)(𝑥) = 𝐵𝑛(𝑥), 𝐸𝑛

(1)(𝑥) = 𝐸𝑛(𝑥), 𝐺𝑛
(1)(𝑥) = 𝐺𝑛(𝑥).  

 
By the motivation of the definition of Khan and 

Usman (2016), we define the following expression. 
 

Definition 2: We define unified Laguerre-based 
poly-Apostol type polynomials as 
 

∑ ( 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑡𝑛

𝑛!
=∞

𝑛=0

(
21−𝑙(𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

𝛽𝑏𝑒𝑡−𝑎𝑏
)

𝛼

𝑒𝑦𝑡+𝑧𝑡2
𝐶0(𝑥𝑡)  

𝑙, 𝑘 ∈ 𝑁0, 𝑎, 𝑏 > 0, 𝑎, 𝑏 ∈ 𝑅\{0}, 𝛼, 𝛽 ∈ 𝐶.                             (15) 

 
For the existence of the expansion, we need 
 

i. |𝑡| < 2𝜋 𝑤ℎ𝑒𝑛 𝛼 ∈ 𝑁0, 𝑘 = 1 𝑎𝑛𝑑 (
𝛽

𝛼
)

𝑏
= 1, |𝑡| <

2𝜋 𝑤ℎ𝑒𝑛 𝛼 ∈ 𝑁0, 𝑘 = 1,2,3 𝑎𝑛𝑑 (
𝛽

𝛼
)

𝑏
= 1, |𝑡| <

|𝑏𝑙𝑜𝑔 (
𝛽

𝛼
)| , 𝑤ℎ𝑒𝑛 𝛼 ∈ 𝑁0, 𝑘 ∈ 𝑁 𝑎𝑛𝑑 (

𝛽

𝛼
)

𝑏
≠ 1, 1𝛼 ≔

1, 𝑎, 𝑏 ∈ 𝐶\{0}, 𝛽 ∈  𝐶.  

ii. |𝑡| < 𝜋 𝑤ℎ𝑒𝑛 (
𝛽

𝛼
)

𝑏
= −1, |𝑡| <

|𝑏𝑙𝑜𝑔 (
𝛽

𝛼
)|  𝑤ℎ𝑒𝑛 (

𝛽

𝛼
)

𝑏
≠ 1, 𝑘 = 0, 1𝛼 ≔ 1, 𝑎, 𝑏 ∈

𝐶\{0}, 𝛼, 𝛽 ∈  𝐶.  

iii. |𝑡| < 𝜋 𝑤ℎ𝑒𝑛 𝛼 ∈ 𝑁0 𝑎𝑛𝑑 (
𝛽

𝛼
)

𝑏
= −1, 𝑥, 𝑦, 𝑧 ∈ 𝑅, 𝑘 ∈

𝑁, 𝛽 ∈  𝐶, 𝑎, 𝑏 ∈ 𝐶\{0}, 1𝛼 ≔ 1 𝑤ℎ𝑒𝑟𝑒 𝑤 = |𝑤|𝑒𝑖𝜃 , −𝜋 <
|𝜃| < 𝜋 𝑎𝑛𝑑 𝑙𝑜𝑔𝑤 = 𝑙𝑜𝑔|𝑤| + 𝑖𝜃.  

 

Remark 1: Setting k=l=1, a=b=1, z=0 and 𝛽 = 𝜆 in 
(15), we have Laguerre-based Apostol-Bernoulli 
polynomials 
 

(
𝑡

𝜆𝑒𝑡−1
)

𝛼
𝑒𝑦𝑡𝐶0(𝑥𝑡) = ∑ ( 𝐿𝑃𝑛,𝜆

[1,𝛼](𝑥, 𝑦, 0; 1,1,1,1))∞
𝑛=0

𝑡𝑛

𝑛!
  

= ∑ ( 𝐿𝐵𝑛
(𝛼)(𝑥, 𝑦, 0; 𝜆))∞

𝑛=0
𝑡𝑛

𝑛!
 .                                              (16) 

 

Remark 2: Choosing k=1, l=0, a=-1, b=1, z=0 and 
𝛽 = 𝜆 in (15), we get Laguerre-based Apostol-Euler 
polynomials 
 

(
2

𝜆𝑒𝑡+1
)

𝛼
𝑒𝑦𝑡𝐶0(𝑥𝑡) = ∑ ( 𝐿𝑃𝑛,𝜆

[1,𝛼](𝑥, 𝑦, 0; 0,1, −1,1))∞
𝑛=0

𝑡𝑛

𝑛!
  

= ∑ ( 𝐿𝐸𝑛
(𝛼)(𝑥, 𝑦, 0; 𝜆))∞

𝑛=0
𝑡𝑛

𝑛!
 .                                              (17) 

 

Remark 3: Putting k=1, l=1, a=−
1

2
, b=1, z=0 and 𝛽 =

𝜆 in (15), we get Laguerre-based Apostol-Genocchi 
polynomials 
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(
2𝑡

𝜆𝑒𝑡+1
)

𝛼
𝑒𝑦𝑡𝐶0(𝑥𝑡) =

∑ ( 𝐿𝑃𝑛,𝜆/2
[1,𝛼]

(𝑥, 𝑦, 0; 1,1, −
1

2
, 1))∞

𝑛=0
𝑡𝑛

𝑛!
  

= ∑ ( 𝐿𝐺𝑛
(𝛼)(𝑥, 𝑦, 0; 𝜆))∞

𝑛=0
𝑡𝑛

𝑛!
 .                                              (18) 

 

𝐿𝑎𝑔𝑢𝑒𝑟𝑟𝑒 −based Apostol-Bernoulli, Laguerre-
based Apostol-Euler and Laguerre-based Apostol-
Genocchi polynomials are studied and investigated 
by Khan and Usman (2016). Luo (2009), Luo and 
Srivastava (2005) and Srivastava (2011) introduced 
the Apostol-Bernoulli, Apostol-Euler and Apostol-
Genocchi polynomials and proved some theorems 
and relations for these polynomials. Kurt (2016a, 
2016b) introduced the unified family of generalized 
Apostol-type polynomials and gave some symmetry 
identities and recurrences relations for these 
polynomials. Ozden et al. (2010) introduced the 
unified representation of the generating functions of 
the generalized Bernoulli, Euler and Genocchi 
polynomials. Ozarslan (2011) studied the unified 
Apostol-Bernoulli, Euler and Genocchi polynomials. 
He gave some theorems for the Hermite-based 
unified Apostol-Bernoulli, Euler and Genocchi 
polynomials.  

Hamahata (2014) and Bayad and Hamahata 
(2011) defined and investigated poly-Bernoulli 
polynomials. Kim and Kim (2015) gave some 
recurrence relation for the higher-order poly-
Bernoulli polynomials. Kim et al. (2014) introduced 
poly-Genocchi polynomials. Pathan and Khan (2016, 
2015, 2014) introduced the Hermite-based Bernoulli 
polynomials, Euler polynomials and gave some 
relation for these polynomials. Khan and Usman 
(2016) introduced a new class of Laguerre-based 
generalized Apostol polynomials. He also gave some 
symmetric relations for these polynomials. 

In this work, we define unified Laguerre-based 
poly-Apostol type polynomials. After we give some 
implicit relations for these polynomials. Also we 
prove some symmetric relations for the unified 
Laguerre-based poly-Apostol type polynomials. 

2. Some ımplicit relations for the unified 
laguerre-based poly-Apostol type polynomials 

In this section, we will give some relations 
between 2-variable Hermite polynomials and the 
unified Laguerre-based poly-Apostol type 
polynomials. Also, we will give some implicit relation 
for these polynomials. 

 

Theorem 1: There is the following relations 
between unified Laguerre-based poly-Apostol type 
polynomials and two variable Hermite polynomials 

 

 𝐻𝑛
(2)(𝑥, 𝑦) as 

 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦 + 𝑢, 𝑧 + 𝑣; 𝑙, 𝑘, 𝑎, 𝑏) 

= ∑ (𝑟
𝑠
)𝑟

𝑠 𝐿𝑃𝑛−𝑠,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)𝐻𝑠

(2)(𝑢, 𝑣).                    (19) 

 

Proof: From (9) and (15) 
 

∑ 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦 + 𝑢, 𝑧 + 𝑣; 𝑙, 𝑘, 𝑎, 𝑏)

𝑡𝑛

𝑛!
∞
𝑛   

= (
21−𝑙(𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

𝛽𝑏𝑒𝑡−𝑎𝑏
)

𝛼

𝑒(𝑦+𝑢)𝑡+(𝑧+𝑣)𝑡2
𝐶0(𝑥𝑡)  

= ∑ 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)

𝑡𝑛

𝑛!
∞
𝑛 ∑ 𝐻𝑠

(2)(𝑢, 𝑣)
𝑡𝑠

𝑠!
∞
𝑠 . 

 

By using Cauchy product, equating the coefficients of  
𝑡𝑛

𝑛!
, we have (19). 

 
Theorem 2: The unified Laguerre-based poly-
Apostol type polynomials satsify the following 
equation 
 

𝐿𝑃𝑛,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧 + 𝑣; 𝑙, 𝑘, 𝑎, 𝑏) =

∑
𝑛!

𝑙!(𝑛−2𝑙)!

[𝑛
2

]

𝑙=0 ( 𝐿𝑃𝑛−2𝑙,𝛽
[𝑘,1] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)) 𝑣𝑙 .                     (20) 

 
Proof: For 𝛼 = 1, from (15) 

 

∑ 𝐿𝑃𝑛,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧 + 𝑣; 𝑙, 𝑘, 𝑎, 𝑏)

𝑡𝑛

𝑛!
∞
𝑛 =

21−𝑙(𝐿𝑖𝑘(1−𝑒−𝑡))
𝑙

𝛽𝑏𝑒𝑡−𝑎𝑏
𝑒𝑦𝑡+𝑧𝑡2

𝐶0(𝑥𝑡)𝑒𝑣𝑡2
  

= ∑ 𝐿𝑃𝑛,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)

𝑡𝑛

𝑛!
∞
𝑛 ∑

𝑣𝑛𝑡2𝑛

𝑛!
∞
𝑛 . 

 

Using Cauchy product, comparing the coefficients 
both sides, we get (20). 

 
Theorem 3: The following relation holds 
 

 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](0, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)   

= ∑ ( 𝑛
𝑚

)𝑛
𝑚 𝐿𝑃𝑚,𝛽

[𝑘,𝛼](𝑙, 𝑘, 𝑎, 𝑏)𝐻𝑛−𝑚
(2) (𝑦, 𝑧).                             (21) 

 
(21) can be obtain easily from (9) and (15). 

 
Theorem 4: Let 𝑎, 𝑏 > 0, 𝑎 ≠ 𝑏, 𝑥, 𝑦, 𝑧 ∈ 𝑅. There is 
the following relation between unified poly-Apostol 
type polynomials and Laguerre polynomials 
 

𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏) =

𝑛! ∑ ∑ ( 𝑛
𝑚

)
𝐿𝑃𝑚,𝛽

[𝑘,𝛼](𝑙,𝑘,𝑎,𝑏)𝐿𝑛−2𝑗−𝑚(𝑥,𝑦)

(𝑛−2𝑗)!𝑗!

𝑛−2𝑗
𝑚

[𝑛
2

]

𝑗=0
𝑧𝑗 .                    (22) 

 
The proof of (22) can be obtain from (1) and (15). 

 
Theorem 5: Unified Laguerre-based poly-Apostol 
type polynomials satisfy the following relation 
 

∑ (𝑛
𝑝

)𝑛
𝑝 ∑ (𝑚

𝑞
)𝑚

𝑞 (𝑣 −

𝑦)𝑚+𝑛−𝑟−𝑠
𝐿𝑃𝑚+𝑛−𝑝−𝑞,𝛽

[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏) =

𝐿𝑃𝑚+𝑛,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏).                                                      (23) 

 
Proof: We replace t by t+u and rewrite the 
generating function (15) as 
 

(
21−𝑙(𝐿𝑖𝑘(1−𝑒−(𝑡+𝑢)))

𝑙

𝛽𝑏𝑒(𝑡+𝑢)−𝑎𝑏
)

𝛼

𝑒𝑧(𝑡+𝑢)2
𝐶0(𝑥 + (𝑡 + 𝑢))  

= 𝑒−𝑦(𝑡+𝑢) ∑ 𝐿𝑃𝑚+𝑛,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)∞

𝑚,𝑛=0
𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
.         (24) 

 
Replacing y by u in the above equation and 

equating the resulting equation to the above 
equation. We get 
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𝑒
(𝑣−𝑦)(𝑡+𝑢) ∑ 𝐿𝑃𝑚+𝑛,𝛽

[𝑘,𝛼] (𝑥,𝑦,𝑧;𝑙,𝑘,𝑎,𝑏)∞
𝑚,𝑛=0

𝑡𝑛

𝑛!

𝑢𝑚

𝑚!   

= ∑ 𝐿𝑃𝑚+𝑛,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)∞

𝑚,𝑛=0
𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
.                          (25) 

 

On expanding exponential function (25) gives 
 

∑
[(𝑣−𝑦)(𝑡+𝑢)]𝑁

𝑁!
∞
𝑁=0 ∑ 𝐿𝑃𝑚+𝑛,𝛽

[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)
𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
∞
𝑚,𝑛=0   

= ∑ 𝐿𝑃𝑚+𝑛,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)

𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
∞
𝑚,𝑛=0                           (26) 

 

which on using formula (Srivastava, 2011). 
 

∑
𝑓(𝑁)(𝑥+𝑦)𝑁

𝑁!
= ∑ 𝑓(𝑚 + 𝑛)

𝑥𝑛

𝑛!

𝑦𝑚

𝑚!
∞
𝑚,𝑛=0

∞
𝑁=0                            (27) 

 
in the left hand side becomes 

 
∑ ∑ (𝑣 −∞

𝑞=0
∞
𝑝=0

𝑦)𝑝+𝑞 𝑡𝑝

𝑝!

𝑢𝑞

𝑞!
∑ ∑ 𝐿𝑃𝑟+𝑠,𝛽

[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)
𝑡𝑟

𝑟!

𝑢𝑠

𝑠!
∞
𝑠=0

∞
𝑟=0 .  

 

From here, we get 
 

∑ ∑ ∑ (𝑛
𝑝

)∞
𝑝=0

∞
𝑛=0 ∑ (𝑚

𝑞
) (𝑣 −𝑚

𝑞=0
∞
𝑚

𝑦)𝑚+𝑛−𝑟−𝑠 ( 𝐿𝑃𝑚+𝑛−𝑝−𝑞,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
   

= ∑ ∑ ( 𝐿𝑃𝑚+𝑛−𝑝−𝑞,𝛽
[𝑘,𝛼]

(𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))
𝑡𝑛

𝑛!

𝑢𝑚

𝑚!
∞
𝑛=0

∞
𝑚=0 . 

 

Comparing of the coefficients of both sides, we have 
(23). 
  
Remark 4: For 𝑘 = 𝑙 = 1, 𝑎 = 𝑏 = 1, 𝑧 = 0, 𝛽 = 𝜆 in 
(23), we have 

 

∑ (𝑛
𝑝

) ∑ (𝑚
𝑞

) (𝑣 − 𝑦)𝑚+𝑛−𝑟−𝑠 ( 𝐿𝐵𝑚+𝑛−𝑝−𝑞
(𝛼) (𝑥, 𝑦; 𝜆))𝑚

𝑞=0  𝑛
𝑝=0  

= ( 𝐿𝐵𝑚+𝑛
(𝛼) (𝑥, 𝑣, 𝑧; 𝜆)). 

 

Remark 5: For 𝑘 = 1, 𝑙 = 0, 𝑎 = −1, 𝑧 = 0, 𝛽 = 𝜆 in 
(23), we have 

 

∑ (𝑛
𝑝

) ∑ (𝑚
𝑞

) (𝑣 − 𝑦)𝑚+𝑛−𝑟−𝑠 ( 𝐿𝐸𝑚+𝑛−𝑝−𝑞
(𝛼) (𝑥, 𝑦; 𝜆))𝑚

𝑞=0  𝑛
𝑝=0  

= ( 𝐿𝐸𝑚+𝑛
(𝛼) (𝑥, 𝑣, 𝑧; 𝜆)). 

 

Remark 6: For 𝑘 = 𝑙 = 𝑏 = 1, 𝑎 = −
1

2
, 𝑧 = 0, 𝛽 =

𝜆

2
 

in (23), we have 
 

∑ (𝑛
𝑝

) ∑ (𝑚
𝑞

) (𝑣 − 𝑦)𝑚+𝑛−𝑟−𝑠 ( 𝐿𝐺𝑚+𝑛−𝑝−𝑞
(𝛼) (𝑥, 𝑦; 𝜆))𝑚

𝑞=0  𝑛
𝑝=0  

= ( 𝐿𝐺𝑚+𝑛
(𝛼) (𝑥, 𝑣, 𝑧; 𝜆)). 

3. Some symmetry ıdentitites for the unified 
laguerre-based poly-Apostol type polynomials 

In  this section, we give some symmetric 
identities for the unified Laguerre-based poly-
Apostol type polynomials. Also, we prove some 
relation between these polynomials and the Stirling 
numbers of the second kind. Further, we give the 
multiple Powers sums for the unified Laguerre-
based poly-Apostol type polynomials. 

 

Theorem 6: Unified Laguerre-based poly-Apostol 
type polynomials satisfy the following symmetry 
identities 

∑ ( 𝑛
𝑚

) ( 𝐿𝑃𝑛−𝑚,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑚=0   

× 𝑐𝑛−𝑚𝑑𝑛 ( 𝐿𝑃𝑚,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))  

= ∑ ( 𝑛
𝑚

) ( 𝐿𝑃𝑛−𝑚,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑚=0   

× 𝑑𝑛−𝑚𝑐𝑛 ( 𝐿𝑃𝑚,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)).                                (28) 

 
Proof: Let 
 

𝑓(𝑡) = (
𝑐𝑙𝑑𝑙22(1−𝑙)(𝐿𝑖𝑘(1−𝑒−𝑡))

2𝑙

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)(𝛽𝑏𝑒𝑑𝑡−𝑎𝑏)
)

𝛼

  

× 𝑒(𝑑+𝑐)𝑦𝑡+(𝑑2+𝑐2)𝑧𝑡2
𝐶0(𝑥𝑑𝑡)𝐶0(𝑥𝑐𝑡)  

= (
2(1−𝑙)(𝑐𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)
)

𝛼

𝑒𝑐𝑦𝑡+𝑐2𝑧𝑡2
𝐶0(𝑥𝑐𝑡)  

× (
2(1−𝑙)(𝑑𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

(𝛽𝑏𝑒𝑑𝑡−𝑎𝑏)
)

𝛼

𝑒𝑑𝑦𝑡+𝑑2𝑧𝑡2
𝐶0(𝑥𝑑𝑡)   

= ∑ ( 𝐿𝑃𝑛,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑐𝑛𝑡𝑛

𝑛!
∞
𝑛=0   

× ∑ ( 𝐿𝑃𝑚,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑑𝑚𝑡𝑚

𝑚!
∞
𝑚=0   

= ∑ ∑ ( 𝑛
𝑚

) ( 𝐿𝑃𝑛−𝑚,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑚=0
∞
𝑛=0   

× 𝑐𝑛−𝑚𝑑𝑛 ( 𝐿𝑃𝑚,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑡𝑛

𝑛!
.                            (29) 

 
In similar manner 
 

𝑓(𝑡) = ∑ ∑ ( 𝑛
𝑚

) ( 𝐿𝑃𝑛−𝑚,𝛽
[𝑘,𝛼] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑚=0
∞
𝑛=0   

 × 𝑑𝑛−𝑚𝑐𝑛 ( 𝐿𝑃𝑚,𝛽
[𝑘,𝛼](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑡𝑛

𝑛!
.                           (30) 

 
From (29) and (30), we obtain (28). 

 
Theorem 7: There is the following relation between 
the unified Laguerre-based Apostol type polynomials 
and Stirling number of the second kind 
 

∑ (𝑛
𝑞

)𝑛
𝑞=0 ( 𝐿𝑃𝑛−𝑞,𝛽

[1,1] (𝑥, 𝑦, 𝑧; 𝑙, 1, 𝑎, 𝑏)) 𝑆(𝑞, 1, 𝑎, 𝑏, 𝛽)  

= 2(1−𝑙) ∑
𝑛!𝐻𝑛−𝑟−𝑙

(2) (𝑦,𝑧)(−1)𝑟𝑥𝑟

(𝑛−𝑙−𝑟)!𝑟!
𝑛−𝑙
𝑟=0 .                                             (31) 

 
Proof: From (15), for 𝛼 = 𝑘 = 1. We write as 
 

∑ ( 𝐿𝑃𝑛,𝛽
[1,1](𝑥, 𝑦, 𝑧; 𝑙, 1, 𝑎, 𝑏))

𝑡𝑛

𝑛!
(𝛽𝑏𝑒𝑡 − 𝑎𝑏)  =∞

𝑛=0

21−𝑙𝑡𝑙 𝑒𝑦𝑡+𝑧𝑡2
𝐶0(𝑥𝑡)  

∑ ( 𝐿𝑃𝑛,𝛽
[1,1](𝑥, 𝑦, 𝑧; 𝑙, 1, 𝑎, 𝑏))∞

𝑛=0
𝑡𝑛

𝑛!
𝛼!  

× ∑ 𝑆(𝑛, 1, 𝑎, 𝑏, 𝛽)∞
𝑛=0

𝑡𝑛

𝑛!
  

= 21−𝑙𝑡𝑙 ∑ ∑ 𝑛!
𝐻𝑛−𝑟

(2) (𝑦,𝑧)(−1)𝑟𝑥𝑟

(𝑛−𝑟)!(𝑟!)2
𝑛
𝑟=0

∞
𝑛=0

𝑡𝑛

𝑛!
. 

 
By using Cauchy product and since 
 

( 𝐿𝑃−𝑞,𝛽
[1,1](𝑥, 𝑦, 𝑧; 𝑙, 1, 𝑎, 𝑏)) = ⋯ =

( 𝐿𝑃𝑛−(𝑙−1),𝛽
[1,1] (𝑥, 𝑦, 𝑧; 𝑙, 1, 𝑎, 𝑏)) = 0. 

 

We obtain (31). 
Theorem 8: The following relation holds 
 

∑ (𝑛
𝑟

) ( 𝐿𝑃𝑟,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑟=0 𝑐𝑟𝑑𝑙𝑎𝑏(𝑑−1)  
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× ∑ (
𝛽

𝑎
)

𝑚
𝑐−1
𝑚=0 (𝑚𝑑)𝑛−𝑟  

= ∑ (𝑛
𝑟

) ( 𝐿𝑃𝑟,𝛽
[𝑘,1]

(
𝑥

𝑑
,

𝑐𝑦

𝑑
,

𝑐2𝑧

𝑑2
; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑟=0 𝑑𝑟𝑐𝑙𝑎𝑏(𝑑−1)  

× ∑ (
𝛽

𝑎
)

𝑚
𝑑−1
𝑚=0 (𝑚𝑐)𝑛−𝑟 .                                                              (32) 

 

Proof: From (5), for 𝛼 = 1. Let 
  

𝑔(𝑡) =
21−𝑙𝑐𝑙𝑑2(𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙
(𝛽𝑏𝑑𝑒𝑐𝑑𝑡−𝑎𝑏𝑑)

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)(𝛽𝑏𝑒𝑑𝑡−𝑎𝑏)
𝑒𝑐𝑦𝑡+𝑐2𝑧𝑡2

𝐶0(𝑥𝑐𝑡)  

=
21−𝑙(𝑐𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)
𝑒𝑐𝑦𝑡+𝑐2𝑧𝑡2

𝐶0(𝑥𝑐𝑡)
𝑑𝑙𝑎𝑏𝑑(1−(

𝛽

𝑎
)

𝑏𝑑
𝑒𝑐𝑑𝑡)

𝑎𝑏(1−(
𝛽

𝑎
)

𝑏
𝑒𝑑𝑡)

  

= ∑ ( 𝐿𝑃𝑛,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))

𝑐𝑛𝑡𝑛

𝑛!
∞
𝑛=0 𝑑𝑙𝑎𝑏(𝑑−1)  

× ∑ ∑ (
𝛽

𝑎
)

𝑚
𝑐−1
𝑚=0

∞
𝑛=0 (𝑚𝑑)𝑛 𝑡𝑛

𝑛!
. 

 
By using the Cauchy product, we have 
 

∑ ∑ (𝑛
𝑟

) ( 𝐿𝑃𝑟,𝛽
[𝑘,1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑟=0 𝑐𝑟𝑑𝑙𝑎𝑏(𝑑−1)∞
𝑛=0   

× ∑ (
𝛽

𝑎
)

𝑚
𝑐−1
𝑚=0 (𝑚𝑑)𝑛−𝑟 𝑡𝑛

𝑛!
.                                                         (33) 

 
Similiarly 
 
𝑔(𝑡) =

21−𝑙(𝑑𝐿𝑖𝑘(1−𝑒−𝑡))
𝑙

(𝛽𝑏𝑒𝑑𝑡−𝑎𝑏)
𝑒

𝑐

𝑑
𝑦𝑑𝑡+

𝑐2

𝑑2𝑧𝑑2𝑡2

𝐶0 (
𝑥

𝑑
𝑑𝑡) 𝑐𝑙 (𝛽𝑏𝑑𝑒𝑐𝑑𝑡−𝑎𝑏𝑑)

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)
   

= ∑ 𝐿𝑃𝑛,𝛽
[𝑘,1]

(
𝑥

𝑑
,

𝑐𝑦

𝑑
,

𝑐2𝑧

𝑑2
; 𝑙, 𝑘, 𝑎, 𝑏)∞

𝑛=0
𝑑𝑛𝑡𝑛

𝑛!
𝑐𝑙𝑎𝑏(𝑑−1)  

× ∑ ∑ (
𝛽

𝑎
)

𝑚
(𝑚𝑐)𝑛𝑑−1

𝑚=0
∞
𝑛=0

𝑡𝑛

𝑛!
. 

 

Using Cauchy product, we get 
 

∑ ∑ (𝑛
𝑟

) ( 𝐿𝑃𝑟,𝛽
[𝑘,1]

(
𝑥

𝑑
,

𝑐𝑦

𝑑
,

𝑐2𝑧

𝑑2
; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝑟=0 𝑑𝑟𝑐𝑙𝑎𝑏(𝑑−1)∞
𝑛=0   

× ∑ (
𝛽

𝑎
)

𝑚
𝑑−1
𝑚=0 (𝑚𝑐)𝑛−𝑟 𝑡𝑛

𝑛!
.                                                         (34) 

 

Equating the coeffiecents of 
𝑡𝑛

𝑛!
 both sides of the 

equations (33) and (34), we obtain (32). 
 

Theorem 9: There is the following symmetric 
relations between multiple power sums and unified 
Laguerre-based poly-Apostol polynomials 
 

𝑑(𝛼−1)𝑙+2 ∑ (𝑛
𝛾

) ( 𝐿𝑃𝑛−𝛾,𝛽
[𝑘,𝛼+1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝛾=0 𝑐𝑛+1−𝛾  

× ∑ (𝛾
𝑝

)
𝛾
𝑝=0 ∑ (𝑝

𝑟
)

𝑝
𝑟=0 (−𝛼)𝑝−𝑟𝑆𝑟

(𝛼)
(𝑐, (

𝛽

𝑎
)

𝑏
)  

× ( 𝐿𝑃𝛾−𝑝,𝛽
[𝑘,1] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)) 𝑑𝛾  

= 𝑐(𝛼−1)𝑙+2 ∑ (𝑛
𝛾

) ( 𝐿𝑃𝑛−𝛾,𝛽
[𝑘,𝛼+1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝛾=0 𝑑𝑛+1−𝛾  

× ∑ (𝛾
𝑝

)
𝛾
𝑝=0 ∑ (𝑝

𝑟
)

𝑝
𝑟=0 (−𝛼)𝑝−𝑟𝑆𝑟

(𝛼)
(𝑑, (

𝛽

𝑎
)

𝑏
)  

× ( 𝐿𝑃𝛾−𝑝,𝛽
[𝑘,1] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)) 𝑐𝛾.                                          (35) 

 

Proof: Let 
 

ℎ(𝑡) =

(21−𝑙𝑑𝑙𝑐𝑙(𝐿𝑖𝑘(1−𝑒−𝑡))
𝑙
)

𝛼+2

(𝛽𝑏𝑒𝑐𝑡−𝑎𝑏)𝛼+1

(𝛽𝑏𝑑𝑒𝑐𝑑𝑡−𝑎𝑏𝑑)
𝛼

(𝛽𝑏𝑒𝑑𝑡−𝑎𝑏)𝛼+1
𝑒(𝑑+𝑐)𝑦𝑡+(𝑑2+𝑐2)𝑧𝑡2

  

× 𝐶0(𝑥𝑐𝑡)𝐶0(𝑥𝑑𝑡)  

= (
21−𝑙(𝑐𝐿𝑖𝑘(1−𝑒−𝑡))

𝑙

𝛽𝑏𝑒𝑐𝑡−𝑎𝑏
)

𝛼+1

𝑒𝑐𝑦𝑡+𝑐2𝑧𝑡2
𝐶0(𝑥𝑐𝑡)𝑐𝑑(𝛼−1)𝑙+2  

 × (
𝛽𝑏𝑑𝑒𝑐𝑑𝑡−𝑎𝑏𝑑

𝛽𝑏𝑒𝑑𝑡−𝑎𝑏
)

𝛼 21−𝑙(𝑑𝐿𝑖𝑘(1−𝑒−𝑡))
𝑙

𝛽𝑏𝑒𝑑𝑡−𝑎𝑏
𝑒𝑑𝑦𝑡+𝑑2𝑧𝑡2

𝐶0(𝑥𝑑𝑡). 

 

By using (6) and Cauchy product, we have 
 

= ∑ {𝑑(𝛼−1)𝑙+2 ∑ (𝑛
𝛾

) ( 𝐿𝑃𝑛−𝛾,𝛽
[𝑘,𝛼+1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝛾=0
∞
𝑛=0   

 × 𝑐𝑛+1−𝛾 ∑ (𝛾
𝑝

)
𝛾
𝑝=0 ∑ (𝑝

𝑟
)

𝑝
𝑟=0 (−𝛼)𝑝−𝑟𝑆𝑟

(𝛼)
(𝑐, (

𝛽

𝑎
)

𝑏
)  

× ( 𝐿𝑃𝛾−𝑝,𝛽
[𝑘,1] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)) 𝑑𝛾}

𝑡𝑛

𝑛!
 .                                  (36) 

 

In similiar manner, 
 
ℎ(𝑡) =

∑ {𝑐(𝛼−1)𝑙+2 ∑ (𝑛
𝛾

) ( 𝐿𝑃𝑛−𝛾,𝛽
[𝑘,𝛼+1](𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏))𝑛

𝛾=0
∞
𝑛=0   

 × 𝑑𝑛+1−𝛾 ∑ (𝛾
𝑝

)
𝛾
𝑝=0 ∑ (𝑝

𝑟
)

𝑝
𝑟=0 (−𝛼)𝑝−𝑟𝑆𝑟

(𝛼)
(𝑑, (

𝛽

𝑎
)

𝑏
) 

 × ( 𝐿𝑃𝛾−𝑝,𝛽
[𝑘,1] (𝑥, 𝑦, 𝑧; 𝑙, 𝑘, 𝑎, 𝑏)) 𝑐𝛾}

𝑡𝑛

𝑛!
 .                                 (37) 

  

Comparing the coeffiecents of 
𝑡𝑛

𝑛!
 both sides of the 

equations (36) and (37). We obtain (35). 

4. Conclusion 

In this work, we apply the poly-Bernoulli 
polynomials to unified Laguerre-based polynomials. 
We obtain some symmetric identities and some 
relations fort he unified Laguerre-based Apostol type 
polynomials. 
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